- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
normal
Square of the length of the tangent drawn from the point $(\alpha ,\beta )$ to the circle $a{x^2} + a{y^2} = {r^2}$ is
A
$a{\alpha ^2} + a{\beta ^2} - {r^2}$
B
${\alpha ^2} + {\beta ^2} - \frac{{{r^2}}}{a}$
C
${\alpha ^2} + {\beta ^2} + \frac{{{r^2}}}{a}$
D
${\alpha ^2} + {\beta ^2} - {r^2}$
Solution
(b) Length of tangent is $\sqrt {{S_1}} $.
Equation of circle is ${x^2} + {y^2} – \frac{{{r^2}}}{a} = 0$
Hence ${S_1} = {\alpha ^2} + {\beta ^2} – \frac{{{r^2}}}{a}$.
Standard 11
Mathematics