Square of the length of the tangent drawn from the point $(\alpha ,\beta )$ to the circle $a{x^2} + a{y^2} = {r^2}$ is
$a{\alpha ^2} + a{\beta ^2} - {r^2}$
${\alpha ^2} + {\beta ^2} - \frac{{{r^2}}}{a}$
${\alpha ^2} + {\beta ^2} + \frac{{{r^2}}}{a}$
${\alpha ^2} + {\beta ^2} - {r^2}$
The line $x\cos \alpha + y\sin \alpha = p$will be a tangent to the circle ${x^2} + {y^2} - 2ax\cos \alpha - 2ay\sin \alpha = 0$, if $p = $
If the line $y = mx + c$be a tangent to the circle ${x^2} + {y^2} = {a^2}$, then the point of contact is
Let the lines $y+2 x=\sqrt{11}+7 \sqrt{7}$ and $2 y + x =2 \sqrt{11}+6 \sqrt{7}$ be normal to a circle $C:(x-h)^{2}+(y-k)^{2}=r^{2}$. If the line $\sqrt{11} y -3 x =\frac{5 \sqrt{77}}{3}+11$ is tangent to the circle $C$, then the value of $(5 h-8 k)^{2}+5 r^{2}$ is equal to.......
If the equation of the tangent to the circle ${x^2} + {y^2} - 2x + 6y - 6 = 0$ parallel to $3x - 4y + 7 = 0$ is $3x - 4y + k = 0$, then the values of $k$ are
The equations of the tangents to the circle ${x^2} + {y^2} - 6x + 4y = 12$ which are parallel to the straight line $4x + 3y + 5 = 0$, are