Gujarati
10-1.Circle and System of Circles
medium

वृत्त ${x^2} + {y^2} - 6x + 4y = 12$ की उन स्पर्श रेखाओं, जो रेखा $4x + 3y + 5 = 0$ के समान्तर हो, के समीकरण हैं  

A

$3x - 4y - 19 = 0,\,\,3x - 4y + 31 = 0$

B

$4x + 3y - 19 = 0,\,\,4x + 3y + 31 = 0$

C

$4x + 3y + 19 = 0,\,\,4x + 3y - 31 = 0$

D

$3x - 4y + 19 = 0,3x - 4y + 31 = 0$

Solution

(c) माना स्पर्श रेखा का समीकरण $4x + 3y + k = 0$है, तब $\sqrt {9 + 4 + 12}  = \left| {\frac{{4(3) + 3( – 2) + k}}{{\sqrt {16 + 9} }}} \right|$

$ \Rightarrow 6 + k =  \pm 25 \Rightarrow k = 19$ व $ – 31$.

अत: स्पर्श रेखायें $4x + 3y + 19 = 0$ व $4x + 3y – 31 = 0$ हैं।

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.