If in triangle $ABC$ ,$ A \equiv (1, 10) $, circumcentre $\equiv$ $\left( { - \,\,{\textstyle{1 \over 3}}\,\,,\,\,{\textstyle{2 \over 3}}} \right)$ and orthocentre $\equiv$ $\left( {{\textstyle{{11} \over 3}}\,\,,\,\,{\textstyle{4 \over 3}}} \right)$ then the co-ordinates of mid-point of side opposite to $A$ is :
$(1, - 11/3)$
$(1, 5)$
$(1, - 3)$
$(1, 6)$
For a point $P$ in the plane, let $d_1(P)$ and $d_2(P)$ be the distance of the point $P$ from the lines $x-y=0$ and $x+y=0$ respectively. The area of the region $R$ consisting of all points $P$ lying in the first quadrant of the plane and satisfying $2 \leq d_1(P)+d_2(P) \leq 4$, is
The co-ordinates of the orthocentre of the triangle bounded by the lines, $4x - 7y + 10 = 0; x + y=5$ and $7x + 4y = 15$ is :
Equation of one of the sides of an isosceles right angled triangle whose hypotenuse is $3x + 4y = 4$ and the opposite vertex of the hypotenuse is $(2, 2)$, will be
Let $\mathrm{A}(-2,-1), \mathrm{B}(1,0), \mathrm{C}(\alpha, \beta)$ and $\mathrm{D}(\gamma, \delta)$ be the vertices of a parallelogram $A B C D$. If the point $C$ lies on $2 x-y=5$ and the point $D$ lies on $3 x-2 y=6$, then the value of $|\alpha+\beta+\gamma+\delta|$ is equal to_____.
The equation of the line which makes right angled triangle with axes whose area is $6$ sq. units and whose hypotenuse is of $5$ units, is