If in triangle $ABC$ ,$ A \equiv (1, 10) $, circumcentre $\equiv$ $\left( { - \,\,{\textstyle{1 \over 3}}\,\,,\,\,{\textstyle{2 \over 3}}} \right)$ and orthocentre $\equiv$ $\left( {{\textstyle{{11} \over 3}}\,\,,\,\,{\textstyle{4 \over 3}}} \right)$ then the co-ordinates of mid-point of side opposite to $A$ is :
$(1, - 11/3)$
$(1, 5)$
$(1, - 3)$
$(1, 6)$
In an isosceles triangle $ABC$, the coordinates of the points $B$ and $C$ on the base $BC$ are respectively $(1, 2)$ and $(2, 1)$. If the equation of the line $AB$ is $y = 2x$, then the equation of the line $AC$ is
Let $b, d>0$. The locus of all points $P(r, \theta)$ for which the line $P$ (where, $O$ is the origin) cuts the line $r \sin \theta=b$ in $Q$ such that $P Q=d$ is
The area of triangle formed by the lines $x + y - 3 = 0 , x - 3y + 9 = 0$ and $3x - 2y + 1= 0$
Let $PQR$ be a right angled isosceles triangle, right angled at $P\, (2, 1)$. If the equation of the line $QR$ is $2x + y = 3$, then the equation representing the pair of lines $PQ$ and $PR$ is
A point moves such that its distance from the point $(4,\,0)$is half that of its distance from the line $x = 16$. The locus of this point is