9.Straight Line
normal

If in triangle $ABC$ ,$ A \equiv (1, 10) $, circumcentre $\equiv$ $\left( { - \,\,{\textstyle{1 \over 3}}\,\,,\,\,{\textstyle{2 \over 3}}} \right)$ and orthocentre $\equiv$ $\left( {{\textstyle{{11} \over 3}}\,\,,\,\,{\textstyle{4 \over 3}}} \right)$ then the co-ordinates of mid-point of side opposite to $A$ is :

A

$(1, - 11/3)$

B

$(1, 5)$

C

$(1, - 3)$

D

$(1, 6)$

Solution

We know that,

The orthocentre,centroid and circumcentre of any triangle are collinear.And the centroid divides

the distance from othocentre to circumcentre in the ratio $2: 1 .$

Let the centroid be $G(x, y)$, its coordinates can be found using the section formula.

$\therefore(x, y) \equiv\left(\frac{\frac{-2}{3}+\frac{11}{3}}{3}, \frac{\frac{4}{3}+\frac{4}{3}}{3}\right) \equiv\left(1, \frac{8}{9}\right)$

Also, the centroid $(G)$ divides the medians $(A D)$ in the ratio 2: 1

Let the coordinates of $D$ be $(h, k)$

$\therefore 1=\frac{2 h+1}{3}$ and $\frac{8}{9}=\frac{2 k+10}{3}$

$h=1$ and $8=6 k+30$

and $k=\frac{-11}{3}$

$\therefore D(h, k)=\left(1, \frac{-11}{3}\right)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.