- Home
- Standard 11
- Physics
The escape speed of a projectile on the earth's surface is $11.2\; km s ^{-1} .$ A body is projected out with thrice this speed. What is the speed (in $km/s$) of the body far away from the earth? Ignore the presence of the sun and other planets.
$15.36$
$31.68$
$26.85$
$40.65$
Solution
Escape velocity of a projectile from the Earth, $v_{ esc }=11.2 km / s$
Projection velocity of the projectile, $v_{ p }=3 vesc$
Mass of the projectile $=m$
Velocity of the projectile far away from the Earth $=v_{ f }$
Total energy of the projectile on the Earth $=\frac{1}{2} m v_{ p }^{2}-\frac{1}{2} m v_{ ec }^{2}$
Gravitational potential energy of the projectile far away from the Earth is zero.
Total energy of the projectile far away from the Earth $=\frac{1}{2} m v_{f}^{2}$
From the law of conservation of energy, we have $\frac{1}{2} m v_{ p }^{2}-\frac{1}{2} m v_{ ec }^{2}=\frac{1}{2} m v_{ f }^{2}$
$v_{ f }=\sqrt{v_{ p }^{2}-v_{ cec }^{2}}$
$=\sqrt{\left(3 v_{ cec }\right)^{2}-\left(v_{ cec }\right)^{2}}$
$=\sqrt{8} v_{esc}$
$=\sqrt{8} \times 11.2=31.68 \;km / s$