3.Trigonometrical Ratios, Functions and Identities
normal

The exact value of $\cos \frac{{2\pi }}{{28}}\,\cos ec\frac{{3\pi }}{{28}}\, + \,\cos \frac{{6\pi }}{{28}}\,\cos ec\frac{{9\pi }}{{28}} + \cos \frac{{18\pi }}{{28}}\cos ec\frac{{27\pi }}{{28}}$ is equal to

 

A

$- 1/2$

B

$1/2$

C

$1$

D

$0$

Solution

$put \frac{\pi}{28} = x$

$T_1$ $= \frac{{\cos \,2\,x}}{{\sin \,3\,x}}$ 

$= \frac{{\cos \,2\,x\,\,\sin \,x}}{{\sin \,3\,x\,\,\sin \,x}} $

$= \frac{1}{2}\left[ {\frac{{\sin \,3x\, – \,\sin \,x}}{{\sin \,3x\,\,\sin \,x}}} \right] $

$= \frac{1}{2}\left[ {\cos \,ecx\, – \,\cos \,ec\,3x} \right]$ etc.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.