The value of $tan^{-1} (\frac{sin2 -1}{cos2})$ is equal to:-

  • A

    $\frac{\pi}{2} - 1$

  • B

    $2 - \frac{\pi}{2}$

  • C

    $1- \frac{\pi}{4}$

  • D

    $ \frac{\pi}{4}-1$

Similar Questions

If $\tan x = \frac{b}{a},$ then $\sqrt {\frac{{a + b}}{{a - b}}} + \sqrt {\frac{{a - b}}{{a + b}}} = $

If $A + B + C = {180^o},$ then $\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C - 1}} = $

If $cosA + cosB = cosC,\ sinA + sinB = sinC$ then the value of expression $\frac{{\sin \left( {A + B} \right)}}{{\sin 2C}}$ is

If $a\,\cos 2\theta + b\,\sin 2\theta = c$  has $\alpha$ and $\beta$ as its solution, then the value of $\tan \alpha + \tan \beta $ is

$\sqrt {\frac{{1 - \sin A}}{{1 + \sin A}}} = $