Gujarati
Hindi
9-1.Fluid Mechanics
normal

The excess pressure inside the first soap bubble is three times that inside the second bubble then, the ratio of volume of the first to the second bubble will be

A

$1 : 27$

B

$3 : 1$

C

$1 : 3$

D

$1 : 9$

Solution

Excess pressure in first soap bubble,

$\mathrm{p}_{1}=\frac{4 \mathrm{T}}{\mathrm{r}_{1}}$

excess pressure inside second bubble,

$\mathrm{p}_{2}=\frac{4 \mathrm{T}}{\mathrm{r}_{2}}$

On dividing these, we get

$\frac{p_{1}}{p_{2}}=\frac{r_{2}}{r_{1}}$

but $\mathrm{p}_{1}=3 \mathrm{p}_{2} \Rightarrow \frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{1}{3}$

$\Rightarrow\left(\frac{r_{1}}{r_{2}}\right)^{3}=\frac{1}{27}$

So, ratio of their volumes is,

$\frac{{\frac{4}{3}\pi {\rm{r}}_1^3}}{{\frac{4}{3}\pi {\rm{r}}_2^3}} = \frac{{{{\rm{v}}_1}}}{{{{\rm{v}}_2}}} \Rightarrow \frac{{{{\rm{v}}_1}}}{{{{\rm{v}}_2}}} = \frac{1}{{27}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.