3.Trigonometrical Ratios, Functions and Identities
hard

The expression,$\frac{{\tan \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)\,\,\,\cos \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)}}{{\cos \,(2\,\pi \,\, - \,\alpha )}}$ $+ cos \left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right) \,sin (\pi -\alpha ) + cos (\pi +\alpha ) sin \,\left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right)$ when simplified reduces to :

A

$0$

B

$1$

C

$-1$

D

none

Solution

$\frac{{ – \,\cot \alpha \,\,\sin \alpha }}{{\cos \alpha }} + sin\alpha . sin\alpha + cos\alpha . cos\alpha = -1+1 = 0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.