For $A = 133^\circ ,\;2\cos \frac{A}{2}$ is equal to
$ - \sqrt {1 + \sin A} - \sqrt {1 - \sin A} $
$ - \sqrt {1 + \sin A} + \sqrt {1 - \sin A} $
$\sqrt {1 + \sin A} - \sqrt {1 - \sin A} $
$\sqrt {1 + \sin A} + \sqrt {1 - \sin A} $
Given that $\cos \left( {\frac{{\alpha - \beta }}{2}} \right) = 2\cos \left( {\frac{{\alpha + B}}{2}} \right)$, then $\tan \frac{\alpha }{2}\tan \frac{\beta }{2} $ is equal to
$\frac{{\cos 12^\circ - \sin 12^\circ }}{{\cos 12^\circ + \sin 12^\circ }} + \frac{{\sin 147^\circ }}{{\cos 147^\circ }} = $
If $\cos \theta = \frac{3}{5}$ and $\cos \phi = \frac{4}{5},$ where $\theta $ and $\phi $ are positive acute angles, then $\cos \frac{{\theta - \phi }}{2} = $
If $A + B + C = \pi \,(A,B,C > 0)$ and the angle $C$ is obtuse then
If $A = 580^o$ then which one of the following is true