$\frac{{\tan \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)\,\,\,\cos \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)}}{{\cos \,(2\,\pi \,\, - \,\alpha )}}$ $+ cos \left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right) \,sin (\pi -\alpha ) + cos (\pi +\alpha ) sin \,\left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right)$ =
$0$
$1$
$-1$
એક પણ નહીં
ધારો કે $\theta $ અને $\phi (\ne 0)$ ની કિમત એવી હોય કે જેથી $sec\,(\theta + \phi ),$ $sec\,\theta $ અને $sec\,(\theta - \phi )$ સમાંતર શ્રેણી માં થાય. જો $cos\,\theta = k\,cos\,( \frac {\phi }{2})$ કોઈક $k,$ માટે હોય તો $k$ =
$\cos 20^\circ \cos 40^\circ \cos 80^\circ = $
If $k = \sin \frac{\pi }{{18}}\,.\,\sin \frac{{5\pi }}{{18}}\,.\,\sin \frac{{7\pi }}{{18}},$ then the numerical value of $k$ is
નીચેનામાંથી ક્યાં સમીકરણની કિમત એક થાય
$\cos 2(\theta + \phi ) - 4\cos (\theta + \phi )\sin \theta \sin \phi + 2{\sin ^2}\phi = $