- Home
- Standard 12
- Physics
The expression for the capacity of the capacitor formed by compound dielectric placed between the plates of a parallel plate capacitor as shown in figure, will be (area of plate $ = A$)

$\frac{{{\varepsilon _0}A}}{{\left( {\frac{{{d_1}}}{{{K_1}}} + \frac{{{d_2}}}{{{K_2}}} + \frac{{{d_3}}}{{{K_3}}}} \right)}}$
$\frac{{{\varepsilon _0}A}}{{\left( {\frac{{{d_1} + {d_2} + {d_3}}}{{{K_1} + {K_2} + {K_3}}}} \right)}}$
$\frac{{{\varepsilon _0}A({K_1}{K_2}{K_3})}}{{{d_1}{d_2}{d_3}}}$
${\varepsilon _0}\left( {\frac{{A{K_1}}}{{{d_1}}} + \frac{{A{K_2}}}{{{d_2}}} + \frac{{A{K_3}}}{{{d_3}}}} \right)$
Solution
(a) As the given combination is in series
$\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$
$=\frac{d_{1}}{K_{1} \epsilon_{o} A}+\frac{d_{2}}{K_{2} \epsilon_{o} A}+\frac{d_{3}}{K_{3} \epsilon_{o} A}$
$\frac{1}{C_{e q}}=\frac{1}{\epsilon_{o} A}\left[\frac{d_{1}}{K_{1}}+\frac{d_{2}}{K_{2}}+\frac{d_{3}}{K_{3}}\right]$
$C_{e q}=\frac{\epsilon_{o} A}{\frac{d_{1}}{K_{1}}+\frac{d_{2}}{K_{2}}+\frac{d_{3}}{K_{3}}}$