The figure shows the electric field lines of three charges with charge $+1, +1$, and $-1$. The Gaussian surface in the figure is a sphere containing two of the charges. The total electric flux through the spherical Gaussian surface is
Positive
Negative
Zero
Impossible to determine without more information
Which of the following figure represents the electric field lines due to a single positive charge?
Each of two large conducting parallel plates has one sided surface area $A$. If one of the plates is given a charge $Q$ whereas the other is neutral, then the electric field at a point in between the plates is given by
An infinitely long uniform line charge distribution of charge per unit length $\lambda$ lies parallel to the $y$-axis in the $y-z$ plane at $z=\frac{\sqrt{3}}{2} a$ (see figure). If the magnitude of the flux of the electric field through the rectangular surface $A B C D$ lying in the $x-y$ plane with its center at the origin is $\frac{\lambda L }{ n \varepsilon_0}\left(\varepsilon_0=\right.$ permittivity of free space $)$, then the value of $n$ is
An electric field is uniform, and in the positive $x$ direction for positive $x,$ and uniform with the same magnitude but in the negative $x$ direction for negative $x$. It is given that $E =200 \hat{ i }\; N/C$ for $x\,>\,0$ and $E = - 200\hat i\;N/C$ for $x < 0 .$ A right ctrcular cyllnder of length $20 \;cm$ and radius $5\; cm$ has its centre at the origin and its axis along the $x$ -axis so that one face is at $x=+10\; cm$ and the other is at $x=-10\; cm$
$(a)$ What is the net outward flux through each flat face?
$(b)$ What is the flux through the side of the cylinder?
$(c)$ What is the net outward flux through the cylinder?
$(d)$ What is the net charge inside the cyllnder?
Why do two electric field lines not intersect each other ?