The figure shows the electric field lines of three charges with charge $+1, +1$, and $-1$. The Gaussian surface in the figure is a sphere containing two of the charges. The total electric flux through the spherical Gaussian surface is
Positive
Negative
Zero
Impossible to determine without more information
A cubical volume is bounded by the surfaces $x =0, x = a , y =0, y = a , z =0, z = a$. The electric field in the region is given by $\overrightarrow{ E }= E _0 \times \hat{ i }$. Where $E _0=4 \times 10^4 NC ^{-1} m ^{-1}$. If $a =2 cm$, the charge contained in the cubical volume is $Q \times 10^{-14} C$. The value of $Q$ is $...........$
Take $\left.\varepsilon_0=9 \times 10^{-12} C ^2 / Nm ^2\right)$
A cube of side $l$ is placed in a uniform field $E$, where $E = E\hat i$. The net electric flux through the cube is
A cylinder of radius $R$ and length $L$ is placed in a uniform electric field $E$ parallel to the cylinder axis. The total flux for the surface of the cylinder is given by-
$\mathrm{C}_1$ and $\mathrm{C}_2$ are two hollow concentric cubes enclosing charges $2 Q$ and $3 Q$ respectively as shown in figure. The ratio of electric flux passing through $\mathrm{C}_1$ and $\mathrm{C}_2$ is :
The electric field in a region is given by $\vec E = \frac{3}{5}{E_0}\hat i + \frac{4}{5}{E_0}\hat j$ and $E_0 = 2\times10^3\, N/C$. Then, the flux of this field through a rectangular surface of area $0.2\, m^2$ parallel to the $y-z$ plane is......$\frac{{N - {m^2}}}{C}$