A charge is kept at the central point $P$ of a cylindrical region. The two edges subtend a half-angle $\theta$ at $P$, as shown in the figure. When $\theta=30^{\circ}$, then the electric flux through the curved surface of the cylinder is $\Phi$ If $\theta=60^{\circ}$, then the electric flux through the curved surface becomes $\Phi / \sqrt{n}$, where the value of $n$ is. . . . . . .

224485-q

  • [IIT 2024]
  • A

    $4$

  • B

    $2$

  • C

    $3$

  • D

    $5$

Similar Questions

Three positive charges of equal value $q$ are placed at the vertices of an equilateral triangle. The resulting lines of force should be sketched as in

  • [IIT 2001]

Electric field in a region is uniform and is given by $\vec{E}=a \hat{i}+b \hat{j}+c \hat{k}$. Electric flux associated with a surface of area $\vec{A}=\pi R^2 \hat{i}$ is

The figure shows two situations in which a Gaussian cube sits in an electric field. The arrows and values indicate the directions and magnitudes (in $N-m^2/C$) of the electric fields. What is the net charge (in the two situations) inside the cube?

  • [AIIMS 2011]

A charge $q$ is surrounded by a closed surface consisting of an inverted cone of height $h$ and base radius $R$, and a hemisphere of radius $R$ as shown in the figure. The electric flux through the conical surface is $\frac{n q}{6 \epsilon_0}$ (in SI units). The value of $n$ is. . . . 

  • [IIT 2022]

The inward and outward electric flux for a closed surface in units of $N{\rm{ - }}{m^2}/C$ are respectively $8 \times {10^3}$ and $4 \times {10^3}.$ Then the total charge inside the surface is [where ${\varepsilon _0} = $ permittivity constant]