The first ionization constant of $H _{2} S$ is $9.1 \times 10^{-8}$. Calculate the concentration of $HS ^{-}$ ion in its $0.1 \,M$ solution. How will this concentration be affected if the solution is $0.1\, M$ in $HCl$ also? If the second dissociation constant of $H _{2} S$ is $1.2 \times 10^{-13}$, calculate the concentration of $S^{2-}$ under both conditions.
$(i)$ To calculate the concentration of $HS ^{-}$ ion:
case $I$ (in the absence of $HCl$ ):
Let the concentration of $HS ^{-}$ be $x$ $M$
${H_2}S\,\quad \leftrightarrow \,\quad {H^ + }\quad + \quad HS$
${C_i}$ $0.1$ $0$ $0$
${C_f}$ $0.1-x$ $x$ $x$
Then, $K_{a_{1}}=\frac{\left|H^{+}\right|\left[H S^{-}\right]}{\left[H_{2} S\right]}$
$9.1 \times 10^{-8}=\frac{(x)(x)}{0.1-x}$
$\left(9.1 \times 10^{-8}\right)(0.1-x)=x^{2}$
Taking $0.1-x \,M ; 0.1 \,M ,$ we have $\left(9.1 \times 10^{-8}\right)(0.1)=x^{2}$
$9.1 \times 10^{-9}=x^{2}$
$x=\sqrt{9.1 \times 10^{-9}}$
$=9.54 \times 10^{-5}\, M$
$\Rightarrow\left[ HS ^{-}\right]=9.54 \times 10^{-5} \,M$
Case $II$ (in the presence of $HCI$ ):
In the presence of $0.1 \,M$ of $HCl$, let $\left[ HS ^{-}\right]$ be $y$ $M$
Then, ${H_2}S\quad \leftrightarrow \quad H{S^ - }\quad + \quad {H^ + }$
${C_i}$ $0.1$ $0$ $0$
${C_f}$ $0.1-y$ $y$ $y$
$Now , \quad K_{a_{1}}=\frac{\left[ HS ^{-}\right]\left[ H ^{+}\right]}{\left[ H _{2} S \right]}$
$K_{a_{1}}=\frac{[y](0.1+y)}{(0.1-y)}$
$9.1 \times 10^{-8}=\frac{y \times 0.1}{0.1}$ $(\because 0.1-y ; 0.1 \,M )$
$9.1 \times 10^{-8}=y$ $(\text { and } 0.1+y ; 0.1 M )$
$\Rightarrow\left[ HS ^{-}\right]=9.1 \times 10^{-8}$
To calculate the concentration of $\left[ S ^{2-}\right]$
Case $I$ (in the absence of $0.1\, M\, HCl$ ):
$HS ^{-} \longleftrightarrow H ^{+}+ S ^{2-}$
$\left[ HS ^{-}\right]=9.54 \times 10^{-5} \,M$ (From first ionization, case $I$)
Let $\left[ S ^{2-}\right]$ be $X$
Also, $\left[ H ^{+}\right]=9.54 \times 10^{-5} \,M$ (From first ionization, case $I$)
$K_{a_{2}}=\frac{\left[ H ^{+}\right]\left[ S ^{2-}\right]}{\left[ HS ^{-}\right]}$
$K_{a_{2}}=\frac{\left(9.54 \times 10^{-5}\right)(X)}{9.54 \times 10^{-5}}$
$1.2 \times 10^{-13}=X=\left[ S ^{2-}\right]$
Case $II$ (in the presence of $0.1 \,M$ $HCI$ )
Again, let the concentration of $HS^{-}$ be $X^{\prime} M$
$\left[ HS ^{-}\right]=9.1 \times 10^{-8} \,M$ (From first ionization, case $II$ )
$\left[ H ^{+}\right]=0.1\, M$ (From $HCl$, case $II$ )
$\left[ S ^{2-}\right]=X^{\prime}$
Then, $K_{a_{2}}=\frac{\left[ H ^{+}\right]\left[ S ^{2-}\right]}{\left[ HS ^{-}\right]}$
$1.2 \times 10^{-13}=\frac{(0.1)\left(X^{\prime}\right)}{9.1 \times 10^{-8}}$
$10.92 \times 10^{-21}=0.1 X^{\prime}$
$\frac{10.92 \times 10^{-21}}{0.1}=X^{\prime}$
$\frac{10.92 \times 10^{-21}}{0.1}=X^{\prime}$
$X^{\prime}=\frac{1.092 \times 10^{-30}}{0.1}$
$=1.092 \times 10^{-14}\, M$
$\Rightarrow K_{a_{1}}=1.74 \times 10^{-5}$
The percentage of pyridine $(C_5H_5N)$ that forms pyridinium ion $(C_5H_5N^+H)$ in a $0.10\, M$ aqueous pyridine solution ($K_b$ for $C_5H_5N = 1.7 \times 10^{-9}$) is
Derive the equation of ionization constant $({K_b})$ of weak base.
The $ pH$ of $ 0.1$ $M$ acetic acid is $3$, the dissociation constant of acid will be
The degree of dissociation of $0.1\,M\,HCN$ solution is $0.01\%$ . Its ionisation constant would be
Ionic product of water at $310 \,K$ is $2.7 \times 10^{-14}$. What is the $\mathrm{pH}$ of neutral water at this temperature?