Gujarati
Hindi
3-1.Vectors
medium

The five sides of a regular pentagon are represented by vectors $A _1, A _2, A _3, A _4$ and $A _5$, in cyclic order as shown below. Corresponding vertices are represented by $B _1, B _2, B _3, B _4$ and $B _5$, drawn from the centre of the pentagon.Then, $B _2+ B _3+ B _4+ B _5$ is equal to

A

$A _1$

B

$- A _1$

C

$B _1$

D

$- B _1$

(KVPY-2009)

Solution

(d)

From triangle law, in given vector pentagon,

We have,

$B _2+ A _3= B _3 \quad \dots(i)$

$B _3+ A _4= B _4 \quad \dots(ii)$

$B _4+ A _5= B _5 \quad \dots(iii)$

$B _5+ A _1= B _1 \quad \dots(iv)$

Adding these equations, we have

$\Rightarrow\left( B _2+ B _3+ B _4+ B _5\right)$ $+\left( A _3+ A _4+ A _5+ A _1\right)$

$=\left( B _3+ B _1+ B _5+ B _1\right)$

$\Rightarrow B _2+ B _3+ B _4+ B _5+$ $\left(- A _2\right)=\left(- B _2\right) \quad \ldots( v )$

As from polygon law of vector addition,

$A _3+ A _4+ A _5+ A _1=- A _2$

$\text { and }$ $B _3+ B _4+ B _5+ B _1=- B _2$

So, from Eq. $(v)$, we have

$B _2+ B _3+ B _4+ B _5= A _2- B _2=- B _1$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.