Two vectors $\overrightarrow{{X}}$ and $\overrightarrow{{Y}}$ have equal magnitude. The magnitude of $(\overrightarrow{{X}}-\overrightarrow{{Y}})$ is ${n}$ times the magnitude of $(\overrightarrow{{X}}+\overrightarrow{{Y}})$. The angle between $\overrightarrow{{X}}$ and $\overrightarrow{{Y}}$ is -
$\cos ^{-1}\left(\frac{n^{2}+1}{n^{2}-1}\right)$
$\cos ^{-1}\left(\frac{{n}^{2}-1}{-{n}^{2}-1}\right)$
$\cos ^{-1}\left(\frac{-n^{2}-1}{n^{2}-1}\right)$
$\cos ^{-1}\left(\frac{n^{2}+1}{n^{2}-1}\right)$
The magnitude of vectors $\overrightarrow{ OA }, \overrightarrow{ OB }$ and $\overrightarrow{ OC }$ in the given figure are equal. The direction of $\overrightarrow{ OA }+\overrightarrow{ OB }-\overrightarrow{ OC }$ with $x$-axis will be
Two forces acting on point $A$ along their side and having magnitude reciprocal to length of side then resultant of these forces will be proportional to
For the resultant of the two vectors to be maximum, what must be the angle between them....... $^o$
Which of the four arrangements in the figure correctly shows the vector addition of two forces $\overrightarrow {{F_1}} $ and $\overrightarrow {{F_2}} $ to yield the third force $\overrightarrow {{F_3}} $