3-1.Vectors
medium

In the cube of side $a$ shown in the figure, the vector from the central point of the face $ABOD$ to the central point of the face $BEFO$ will be

A

$\frac{1}{2}\,a\,\left( {\hat k - \hat i} \right)$

B

$\frac{1}{2}\,a\,\left( {\hat i - \hat k} \right)$

C

$\frac{1}{2}\,a\,\left( {\hat j - \hat i} \right)$

D

$\frac{1}{2}\,a\,\left( {\hat j - \hat k} \right)$

(JEE MAIN-2019)

Solution

Position vector of $G$ is $\overrightarrow{O G}=\frac{a \vec{i}}{2}+\frac{a}{2} \vec{k}$

Position vector of $H$ is $\overrightarrow{O H}=\frac{a}{2} \vec{j}+\frac{a}{2} \vec{k}$

$\overrightarrow{G H}=\frac{a}{2}(\vec{j}-\vec{i})$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.