अतिपरवलय $9{x^2} - 16{y^2} = 144$ की नाभि है
$( \pm 4,\;0)$
$(0,\; \pm 4)$
$( \pm 5,\;0)$
$(0,\; \pm 5)$
यदि किसी अतिपरवलय की नाभि तथा शीर्ष $(0,\; \pm 4)$ तथा $(0,\; \pm 2)$ हों, तो उसका समीकरण होगा
एक अतिपरवलय की अनुप्रस्थ अक्ष की लम्बाई $7$ है तथा वह बिन्दु $(5, -2)$ से गुजरता है। अतिपरवलय का समीकरण है
एक अतिपरवलय $H$ के शीर्ष $( \pm 6,0)$ है, तथा उत्केन्द्रता $\frac{\sqrt{5}}{2}$ है। माना प्रथम चतुर्थांश में $\mathrm{H}$ के एक बिन्दु पर रेखा $\sqrt{2} \mathrm{x}+\mathrm{y}=2 \sqrt{2}$ के समान्तर अभिलम्ब $\mathrm{N}$ है। यदि $\mathrm{N}$ के $\mathrm{H}$ तथा $\mathrm{y}$-अक्ष के बीच रेखाखंड की लम्बाई $\mathrm{d}$ है, तो $\mathrm{d}^2$ बराबर है_____________.
अतिपरवलय $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ के लिए $'\alpha '$ का मान परिवर्तित करने पर निम्न में से क्या अचर रहेगा
अतिपरवलय $16{x^2} - 9{y^2} = 144$ पर कोई बिन्दु $P$ है। यदि ${S_1}$ तथा ${S_2}$ इसकी नाभियाँ हों, तो $P{S_1} - P{S_2} = $