The following statement $\left( {p \to q} \right) \to $ $[(\sim p\rightarrow q) \rightarrow q ]$ is
a fallacy
a tautology
equivalent to $\sim p \to q$
equivalent to $p \to \sim q$
If $p , q$ and $r$ are three propositions, then which of the following combination of truth values of $p , q$ and $r$ makes the logical expression $\{(p \vee q) \wedge((\sim p) \vee r)\} \rightarrow((\sim q) \vee r)$ false ?
If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of $p$ and $q$ are respectively .
The negation of the expression $q \vee((\sim q) \wedge p)$ is equivalent to
$\sim p \wedge q$ is logically equivalent to
$\sim ((\sim p)\; \wedge q)$ is equal to