Consider the following three statements :
$(A)$ If $3+3=7$ then $4+3=8$.
$(B)$ If $5+3=8$ then earth is flat.
$(C)$ If both $(A)$ and $(B)$ are true then $5+6=17$. Then, which of the following statements is correct?
$(A)$ and $(C)$ are true while $(B)$ is false
$(A)$ is true while $(B)$ and $(C)$ are false
$(A)$ is false, but $(B)$ and $(C)$ are true
$(A)$ and $(B)$ are false while $(C)$ is true
$\sim (p \vee q) \vee (~ p \wedge q)$ is logically equivalent to
The proposition $p \rightarrow \sim( p \wedge \sim q )$ is equivalent to
If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of $p$ and $q$ are respectively .
The conditional $(p \wedge q) ==> p$ is
If the truth value of the statement $p \to \left( { \sim q \vee r} \right)$ is false $(F)$, then the truth values of the statement $p, q, r$ are respectively