The following system of linear equations  $7 x+6 y-2 z=0$ ; $3 x+4 y+2 z=0$ ; ${x}-2{y}-6{z}=0,$ has

  • [JEE MAIN 2020]
  • A

    infinitely many solutions, $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ satisfying $x=2 z$

  • B

    no solution

  • C

    only the trivial solution

  • D

    infinitely many solutions, $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ satisfying $y=2 z$

Similar Questions

$\left| {\,\begin{array}{*{20}{c}}1&5&\pi \\{{{\log }_e}e}&5&{\sqrt 5 }\\{{{\log }_{10}}10}&5&e\end{array}\,} \right| = $

If the system of equations

$ 11 x+y+\lambda z=-5 $

$ 2 x+3 y+5 z=3 $

$ 8 x-19 y-39 z=\mu$

has infinitely many solutions, then $\lambda^4-\mu$ is equal to :

  • [JEE MAIN 2024]

If $a,b,c$ and $d $ are complex numbers, then the determinant $\Delta = \left| {\,\begin{array}{*{20}{c}}2&{a + b + c + d}&{ab + cd}\\{a + b + c + d}&{2(a + b)(c + d)}&{ab(c + d) + cd(a + b)}\\{ab + cd}&{ab(c + d) + cd(a + d)}&{2abcd}\end{array}} \right|$is

The system of equations $4x + y - 2z = 0\ ,\ x - 2y + z = 0$ ; $x + y - z =0 $ has

If $\alpha , \beta \, and \, \gamma$ are real numbers , then $D = \left|{\begin{array}{*{20}{c}}1&{\cos \,(\beta \, - \,\alpha )}&{\cos \,(\gamma \, - \,\alpha )}\\{\cos \,(\alpha \, - \,\beta )}&1&{\cos \,(\gamma \, - \,\beta )}\\{\cos \,(\alpha \, - \,\gamma )}&{\cos \,(\beta \, - \,\gamma )}&1 \end{array}} \right|$ =