The value of the determinant $\left| {\begin{array}{*{20}{c}}{{a^2}}&a&1\\{\cos \,(nx)}&{\cos \,(n\, + \,1)\,x}&{\cos \,(n\, + \,2)\,x}\\{\sin \,(nx)}&{\sin \,(n\, + \,1)\,x}&{\sin \,(n\, + \,2)\,x}\end{array}} \right|$ is independent of :

  • A
    $n$
  • B
    $a$
  • C
    $x$
  • D
    $a , n$ and $x$

Similar Questions

In a $\Delta ABC,$ if $\left| {\,\begin{array}{*{20}{c}}1&a&b\\1&c&a\\1&b&c\end{array}\,} \right| = 0$, then ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C = $

Statement $-1 :$Determinant of a skew-symmetric matrix of order $3$ is zero

Statement $-2 :$ For any matrix $A,$ $\det \left( {{A^T}} \right) = {\rm{det}}\left( A \right)$ and $\det \left( { - A} \right) = - {\rm{det}}\left( A \right)$ Where $\det \left( A \right) = A$. Then :

  • [AIEEE 2011]

The sum of distinct values of $\lambda$ for which the system of equations

$(\lambda-1) x+(3 \lambda+1) y+2 \lambda z=0$

$(\lambda-1) x+(4 \lambda-2) y+(\lambda+3) z=0$

$2 x+(3 \lambda+1) y+3(\lambda-1) z=0$

has non-zero solutions, is

  • [JEE MAIN 2020]

Let $k_1$, $k_2$ be the maximum and minimum values of $k$ for which the system of equations given by

$x + ky = 1$ ; $kx + y = 2$;  $x + y = k$  are consistent then $k_1^2 + k_2^2$ is equal to

Three digit numbers $x17, 3y6$ and $12z$ where $x, y, z$ are integers from $0$ to $9$, are divisible by a fixed constant $k$. Then the determinant $\left| {\,\begin{array}{*{20}{c}}x&3&1\\7&6&z\\1&y&2\end{array}\,} \right|$ + $48$ must be divisible by