The foundations of dimensional analysis were laid down by
Gallileo
Newton
Fourier
Joule
(c)
In a system of units if force $(F)$, acceleration $(A) $ and time $(T)$ are taken as fundamental units then the dimensional formula of energy is
The equation of stationary wave is
$\mathrm{y}=2 \mathrm{a} \sin \left(\frac{2 \pi \mathrm{nt}}{\lambda}\right) \cos \left(\frac{2 \pi \mathrm{x}}{\lambda}\right)$
Which of the following is NOT correct
Consider two physical quantities A and B related to each other as $E=\frac{B-x^2}{A t}$ where $E, x$ and $t$ have dimensions of energy, length and time respectively. The dimension of $A B$ is
In a particular system of units, a physical quantity can be expressed in terms of the electric charge $c$, electron mass $m_c$, Planck's constant $h$, and Coulomb's constant $k=\frac{1}{4 \pi \epsilon_0}$, where $\epsilon_0$ is the permittivity of vacuum. In terms of these physical constants, the dimension of the magnetic field is $[B]=[c]^\alpha\left[m_c\right]^\beta[h]^\gamma[k]^\delta$. The value of $\alpha+\beta+\gamma+\delta$ is. . . . .
Confusing about what to choose? Our team will schedule a demo shortly.