विमीय विश्लेषण की नींव किसके द्वारा रखी गयी
गैलीलियो
न्यूटन
फोरियर
जूल
(c)
मान लीजिये कि एक इकाई प्रणाली में द्रव्यमान तथा कोणीय संवेग विमा (dimensionless) रहित है। यदि लम्बाई की विमा $L$ हो तब निम्नलिखित कथनों में से कौनसा (से) सही है( हैं) ?
$(1)$ बल की विमा (dimension) $L ^{-3}$ है।
$(2)$ ऊर्जा की विमा (dimension) $L ^{-2}$ है।
$(3)$ शक्ति की विमा (dimension) $L ^{-5}$ है।
$(4)$ रेखीय संवेग की विमा (dimension) $L ^{-1}$ है।
एक भौतिक राशि $x$, अन्य भौतिक राशियों $y$ तथा $z$ पर निम्न प्रकार निर्भर करती है, $x = Ay + B\;\tan \;Cz$ जहाँ $A,\;B$ तथा $C$ नियतांक हैं । निम्न में से किनकी विमायें समान नहीं हैं
$F=\alpha t^2+\beta t$ द्वारा परिभाषित एक बल दिये गये समय $t$ पर एक कण पर आरोपित होता है। यदि $\alpha$ तथा $\beta$ नियतांक हो तो निम्न में से कौन सा घटक विमाहीन है ?
आइए निम्नलिखित समीकरण पर विचार करे $\frac{1}{2} m v^{2}=m g h$ यहाँ $m$ वस्तु का द्रव्यमान, $v$ इसका वेग है, $g$ गुरुत्वीय त्वरण और $h$ ऊँचाई है। जाँचिए कि क्या यह समीकरण विमीय दृष्टि से सही है।
यदि $L,\,\,C$ तथा $R$ क्रमश: प्रेरकत्व, धारिता तथा प्रतिरोध प्रदर्शित करते हैं, तो निम्न में से कौन आवृत्ति की विमायें प्रदर्शित नहीं करेगा
Confusing about what to choose? Our team will schedule a demo shortly.