The frequency of oscillation of a mass $m$ suspended by a spring is $'v'$. If mass is cut to one fourth then what will be the frequency of oscillation ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The frequency of oscillation of a mass suspended by a spring

$v=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$

$\therefore v \propto \frac{1}{\sqrt{m}}$

$\therefore \quad\frac{v_{2}}{v_{1}}=\sqrt{\frac{m_{1}}{m_{2}}}=\sqrt{\frac{m_{1}}{m_{1}}}=\sqrt{4}=2$

$\therefore \quad v_{2}=2 v\left[\because v_{1}=v\right]$

Similar Questions

The time period of simple harmonic motion of mass $\mathrm{M}$ in the given figure is $\pi \sqrt{\frac{\alpha M}{5 K}}$, where the value of $\alpha$ is____.

  • [JEE MAIN 2024]

When a particle of mass $m$ is attached to a vertical spring of spring constant $k$ and released, its motion is described by $y ( t )= y _{0} \sin ^{2} \omega t ,$ where $'y'$ is measured from the lower end of unstretched spring. Then $\omega$ is

  • [JEE MAIN 2020]

Two springs of force constants $300\, N / m$ (Spring $A$) and $400$ $N / m$ (Spring $B$ ) are joined together in series. The combination is compressed by $8.75\, cm .$ The ratio of energy stored in $A$ and $B$ is $\frac{E_{A}}{E_{B}} .$ Then $\frac{E_{A}}{E_{B}}$ is equal to

  • [AIIMS 2019]

A spring having with a spring constant $1200\; N m ^{-1}$ is mounted on a hortzontal table as shown in Figure A mass of $3 \;kg$ is attached to the free end of the spring. The mass is then pulled sideways to a distance of $2.0 \;cm$ and released 

let us take the position of mass when the spring is unstreched as $x=0,$ and the direction from left to right as the positive direction of $x$ -axis. Give $x$ as a function of time $t$ for the oscillating mass if at the moment we start the stopwatch $(t=0),$ the mass is

$(a)$ at the mean position,

$(b)$ at the maximum stretched position, and

$(c)$ at the maximum compressed position. In what way do these functions for $SHM$ differ from each other, in frequency, in amplitude or the inittal phase?

A mass of $5\, {kg}$ is connected to a spring. The potential energy curve of the simple harmonic motion executed by the system is shown in the figure. A simple pendulum of length $4\, {m}$ has the same period of oscillation as the spring system. What is the value of acceleration due to gravity on the planet where these experiments are performed? (In ${m} / {s}^{2}$)

  • [JEE MAIN 2021]