Two identical balls A and B each of mass 0.1 kg are attached to two identical massless springs. The spring mass system is constrained to move inside a rigid smooth pipe bent in the form of a circle as shown in the figure. The pipe is fixed in a horizontal plane. The centres of the balls can move in a circle of radius 0.06 m. Each spring has a natural length of 0.06$\pi$ m and force constant 0.1N/m. Initially both the balls are displaced by an angle $\theta = \pi /6$ radian with respect to the diameter $PQ$ of the circle and released from rest. The frequency of oscillation of the ball B is

96-34

  • A

    $\pi \,Hz$

  • B

    $\frac{1}{\pi }Hz$

  • C

    $2\pi \,Hz$

  • D

    $\frac{1}{{2\pi }}Hz$

Similar Questions

Two particles of mass $m$ are constrained to move along two horizontal frictionless rails that make an angle $2\theta $ with respect to each other. They are connected by a spring with spring constant $k$ . The angular frequency of small oscillations for the motion where the two masses always stay parallel to each other (that is the distance between the meeting point of the rails and each particle is equal) is 

An ideal spring with spring-constant $K$ is hung from the ceiling and a block of mass $M$ is attached to its lower end. The mass is released with the spring initially unstretched. Then the maximum extension in the spring is

  • [IIT 2002]

A mass $m$ is suspended by means of two coiled spring which have the same length in unstretched condition as in figure. Their force constant are $k_1$ and $k_2$ respectively. When set into vertical vibrations, the period will be

Two springs of force constants $K$ and $2K$ are connected to a mass as shown below. The frequency of oscillation of the mass is

  • [AIIMS 2003]

A mass of $2\,kg$ is attached to the spring of spring constant $50 \,Nm^{-1}$. The block is pulled to a distance of $5 \,cm $ from its equilibrium position at $x= 0$ on a horizontal frictionless surface from rest at $t = 0$. Write the expression for its displacement at anytime $t$.