The frictional force acting on $1 \,kg$ block is .................. $N$
$0.1$
$2$
$0.5$
$5$
An inclined plane is bent in such a way that the vertical cross-section is given by $y =\frac{ x ^{2}}{4}$ where $y$ is in vertical and $x$ in horizontal direction. If the upper surface of this curved plane is rough with coefficient of friction $\mu=0.5,$ the maximum height in $cm$ at which a stationary block will not slip downward is............$cm$
A girl holds a book of mass $m$ against a vertical wall with a horizontal force $F$ using her finger, so that the book does not move. The frictional force on the book by the wall is
A car is moving along a straight horizontal road with a speed ${v_0}$. If the coefficient of friction between the tyres and the road is $\mu $, the shortest distance in which the car can be stopped is
Figure shows a man standing stationary with respect to a horizontal conveyor belt that is accelerating with $1\; m s^{-2}$. What is the net force on the man? If the coefficient of static friction between the man’s shoes and the belt is $0.2$, up to what acceleration of the belt can the man continue to be stationary relative to the belt? (Mass of the man $= 65 \;kg.)$
A block of mass $M$ is held against a rough vertical well by pressing it with a finger. If the coefficient of friction between the block and the wall is $\mu $ and acceleration due to gravity is $g$, calculate the minimum force required to be applied by the finger to hold the block against the wall.