The graph of the conic $x^2-(y-1)^2=1$ has one tangent line with positive slope that passes through the origin. The point of the tangency being $(a, b)$ then find the value of $\sin ^{-1}\left(\frac{a}{b}\right)$
$\frac{{5\pi }}{{12}}$
$\frac{\pi }{6}$
$\frac{\pi }{3}$
$\frac{\pi }{4}$
Circles are drawn on chords of the rectangular hyperbola $ xy = c^2$ parallel to the line $ y = x $ as diameters. All such circles pass through two fixed points whose co-ordinates are :
The asymptote of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}}= 1$ form with any tangent to the hyperbola a triangle whose area is $a^2$ $\tan$ $ \lambda $ in magnitude then its eccentricity is :
The normal to the rectangular hyperbola $xy = c^2$ at the point $'t_1'$ meets the curve again at the point $'t_2'$ . Then the value of $t_{1}^{3} t_{2}$ is
Let the eccentricity of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ be reciprocal to that of the ellips $x^2+4 y^2=4$. If the hyperbola passes through a focus of the ellipse, then
$(A)$ the equation of the hyperbola is $\frac{x^2}{3}-\frac{y^2}{2}=1$
$(B)$ a focus of the hyperbola is $(2,0)$
$(C)$ the eccentricity of the hyperbola is $\sqrt{\frac{5}{3}}$
$(D)$ the equation of the hyperbola is $x^2-3 y^2=3$
If the tangent and normal to a rectangular hyperbola $xy = c^2$ at a variable point cut off intercept $a_1, a_2$ on $x-$ axis and $b_1, b_2$ on $y-$ axis, then $(a_1a_2 + b_1b_2)$ is