Gujarati
Hindi
13.Nuclei
hard

The half life of a radioactive substance is $20$ minutes. The approximate time interval $(t_2 -t_1)$ between the time $t_2$ when $3/4$ of it has decayed and time $t_1$ when $1/4$ of it had decayed is

A

$\frac{{20}}{{\ln 2}}\min$

B

$\frac{{20\ln 3}}{{\ln 2}}\min$

C

$20$ $min$

D

$20\ln 2\min$

Solution

$\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$

$\frac{3}{4}=\mathrm{N}_{0} \mathrm{e}^{-\lambda t_{2}}$         …….$(1)$

$\frac{1}{4}=\mathrm{N}_{0} \mathrm{e}^{-\lambda t_{1}}$          ……..$(2)$

$\lambda=\frac{\ln 2}{20}$             ………..$(3)$

Solve equation $(1),(2) $ and $(3)$

$t_{2}-t_{1}=\frac{20 \ln 3}{\ln 2}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.