13.Nuclei
medium

The half life of radium is $1620$ years and its atomic weight is $226\, k\,gm$ per kilomol. The number of atoms that will decay from its $1\, gm$ sample per second will be

(Avogadro's number $N = 6.02 \times {10^{26}}$atom/kilomol)

A

$3.61 \times {10^{10}}$

B

$3.6 \times {10^{12}}$

C

$3.11 \times {10^{15}}$

D

$31.1 \times {10^{15}}$

Solution

(a) $\frac{{dN}}{{dt}} = \lambda N;$

$\lambda  = \frac{{0.6931}}{{{t_{12}}}} = \frac{{0.6931}}{{1620 \times 365 \times 24 \times 60 \times 60}}$

$N = \frac{{6.023 \times {{10}^{23}}}}{{226}}$

$\therefore \frac{{dN}}{{dt}} = \frac{{0.6931 \times 6.023 \times {{10}^{23}}}}{{1620 \times 365 \times 24 \times 60 \times 60 \times 226}} = 3.61 \times 10^{10}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.