- Home
- Standard 12
- Physics
13.Nuclei
medium
The half life of radium is $1620$ years and its atomic weight is $226\, k\,gm$ per kilomol. The number of atoms that will decay from its $1\, gm$ sample per second will be
(Avogadro's number $N = 6.02 \times {10^{26}}$atom/kilomol)
A
$3.61 \times {10^{10}}$
B
$3.6 \times {10^{12}}$
C
$3.11 \times {10^{15}}$
D
$31.1 \times {10^{15}}$
Solution
(a) $\frac{{dN}}{{dt}} = \lambda N;$
$\lambda = \frac{{0.6931}}{{{t_{12}}}} = \frac{{0.6931}}{{1620 \times 365 \times 24 \times 60 \times 60}}$
$N = \frac{{6.023 \times {{10}^{23}}}}{{226}}$
$\therefore \frac{{dN}}{{dt}} = \frac{{0.6931 \times 6.023 \times {{10}^{23}}}}{{1620 \times 365 \times 24 \times 60 \times 60 \times 226}} = 3.61 \times 10^{10}$
Standard 12
Physics