The horizontal range and maximum height attained by a projectile are $R$ and $H$, respectively. If a constant horizontal acceleration $a=g / 4$ is imparted to the projectile due to wind, then its horizontal range and maximum height will be

  • A

    $(R+H), \frac{H}{2}$

  • B

    $\left(R+\frac{H}{2}\right), 2 H$

  • C

    $( R +2 H ), H$

  • D

    $(R+H), H$

Similar Questions

Given below are two statements. One is labelled as Assertion $A$ and the other is labelled as Reason $R$.

Assertion A :Two identical balls $A$ and $B$ thrown with same velocity '$u$ ' at two different angles with horizontal attained the same range $R$. If $A$ and $B$ reached the maximum height $h_{1}$ and $h_{2}$ respectively, then $R =4 \sqrt{ h _{1} h _{2}}$

Reason R: Product of said heights.

$h _{1} h _{2}=\left(\frac{u^{2} \sin ^{2} \theta}{2 g }\right) \cdot\left(\frac{u^{2} \cos ^{2} \theta}{2 g }\right)$

Choose the $CORRECT$ answer 

  • [JEE MAIN 2022]

If we can throw a ball upto a maximum height $H$, the maximum horizontal distance to which we can throw it is

  • [AIIMS 2011]

A particle is projected from ground at an angle $\theta$ with horizontal with speed $u$. The ratio of radius of curvature of its trajectory at point of projection to radius of curvature at maximum height is ........

A ball of mass $1 \;kg$ is thrown vertically upwards and returns to the ground after $3\; seconds$. Another ball, thrown at $60^{\circ}$ with vertical also stays in air for the same time before it touches the ground. The ratio of the two heights are

  • [NEET 2017]

Motion in two dimensions, in a plane can be studied by expressing position, velocity and acceleration as vectors in cartesian co-ordinates $A=A_{x} \hat{i}+A_{y} \hat{j},$ where $\hat{i}$ and $\hat{\jmath}$ are unit vector along $x$ and $y$ - directions, respectively and $A_{x}$ and $A_{y}$ are corresponding components of $A$. Motion can also be studied by expressing vectors in circular polar co-ordinates as $\overrightarrow A \, = \,{A_r}\widehat r\,\, + \,{A_\theta }\hat \theta $ where $\hat{r}=\frac{r}{r}=\cos \theta \hat{i}+\sin \theta \hat{\jmath}$ and $\hat{\theta}=-\sin \theta \hat{i}+\cos \theta \hat{j}$ are unit vectors along direction in which $\hat{r}$ and $\hat{\theta}$ are increasing.

$(a)$ Express ${\widehat {i\,}}$ and ${\widehat {j\,}}$ in terms of  ${\widehat {r\,}}$ and ${\widehat {\theta }}$  .

$(b)$ Show that both  $\widehat r$ and $\widehat \theta $ are unit vectors and are perpendicular to each other.

$(c)$ Show that $\frac{d}{{dr}}(\widehat r)\, = \,\omega \hat \theta \,$, where $\omega \, = \,\frac{{d\theta }}{{dt}}$ and $\frac{d}{{dt}}(\widehat \theta )\, = \, - \theta \widehat r\,$.

$(d)$ For a particle moving along a spiral given by $\overrightarrow r \, = \,a\theta \widehat r$, where $a = 1$ (unit), find dimensions of $a$.

$(e)$ Find velocity and acceleration in polar vector representation for particle moving along spiral described in $(d)$ above.