3 and 4 .Determinants and Matrices
easy

The identity element in the group $M = \left\{ {\left. {\left( {\begin{array}{*{20}{c}}x&x\\x&x\end{array}} \right)} \right|x \in R;\,x \ne 0\,} \right\}$ with respect to matrix multiplication is

A

$\left( {\begin{array}{*{20}{c}}1&1\\1&1\end{array}} \right)$

B

$\frac{1}{2}\left( {\begin{array}{*{20}{c}}1&1\\1&1\end{array}} \right)$

C

$\left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)$

D

$\left( {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right)$

Solution

(b) Let $\left[ {\begin{array}{*{20}{c}}a&a\\a&a\end{array}} \right]$be the identity element then

$\left[ {\begin{array}{*{20}{c}}x&x\\x&x\end{array}} \right]\left[ {\begin{array}{*{20}{c}}a&a\\a&a\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}x&x\\x&x\end{array}} \right]$

i.e., $2ax = x \Rightarrow a = \frac{1}{2}$,

Identity element = $\frac{1}{2}\left[ {\begin{array}{*{20}{c}}1&1\\1&1\end{array}} \right]$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.