The least integral value $\alpha $ of $x$ such that $\frac{{x - 5}}{{{x^2} + 5x - 14}} > 0$ , satisfies

  • [JEE MAIN 2013]
  • A

    ${\alpha ^2} + 3\alpha  - 4 = 0$

  • B

    ${\alpha ^2} - 5\alpha  + 4 = 0$

  • C

    ${\alpha ^2} - 7\alpha  + 6 = 0$

  • D

    ${\alpha ^2} + 5\alpha  - 6 = 0$

Similar Questions

The number of solution$(s)$ of the equation $2^x = x^2$ is

The number of real values of $x$ for which the equality $\left| {\,3{x^2} + 12x + 6\,} \right| = 5x + 16$ holds good is

Number of integral values of '$m$' for which $\{x\}^2 + 5m\{x\} - 3m + 1 < 0 $ $\forall x \in  R$, is (where $\{.\}$ denotes fractional part function)

The number of real solution of equation $(\frac{3}{2})^x =  -x^2 + 5x-10$ :-

Let $\alpha_1, \alpha_2, \ldots, \alpha_7$ be the roots of the equation $x^7+$ $3 x^5-13 x^3-15 x=0$ and $\left|\alpha_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$. Then $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6$ is equal to $..................$.

  • [JEE MAIN 2023]