The least integral value $\alpha $ of $x$ such that $\frac{{x - 5}}{{{x^2} + 5x - 14}} > 0$ , satisfies

  • [JEE MAIN 2013]
  • A

    ${\alpha ^2} + 3\alpha  - 4 = 0$

  • B

    ${\alpha ^2} - 5\alpha  + 4 = 0$

  • C

    ${\alpha ^2} - 7\alpha  + 6 = 0$

  • D

    ${\alpha ^2} + 5\alpha  - 6 = 0$

Similar Questions

Let $\alpha $ and $\beta $ are roots of $5{x^2} - 3x - 1 = 0$ , then $\left[ {\left( {\alpha  + \beta } \right)x - \left( {\frac{{{\alpha ^2} + {\beta ^2}}}{2}} \right){x^2} + \left( {\frac{{{\alpha ^3} + {\beta ^3}}}{3}} \right){x^3} -......} \right]$ is

The number of positive integers $x$ satisfying the equation $\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x+2}=\frac{13}{2}$ is.

  • [KVPY 2021]

If the sum of two of the roots of ${x^3} + p{x^2} + qx + r = 0$ is zero, then $pq =$

Let $S$ be the set of all real roots of the equation, $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right| .$ Then $\mathrm{S}$

  • [JEE MAIN 2020]

The number of real solution of equation $(\frac{3}{2})^x =  -x^2 + 5x-10$ :-