Number of integers satisfying inequality, $\sqrt {{{\log }_3}(x) - 1}  + \frac{{\frac{1}{2}{{\log }_3}\,{x^3}}}{{{{\log }_3}\,\frac{1}{3}}} + 2 > 0$ is

  • A

    $5$

  • B

    $6$

  • C

    $7$

  • D

    $8$

Similar Questions

Number of positive integral values of $'K'$ for which the equation $k = \left| {x + \left| {2x - 1} \right|} \right| - \left| {x - \left| {2x - 1} \right|} \right|$ has exactly three real solutions, is

Suppose $a$ is a positive real number such that $a^5-a^3+a=2$. Then,

  • [KVPY 2016]

If $x$ is real , the maximum value of $\frac{{3{x^2} + 9x + 17}}{{3{x^2} + 9x + 7}}$ is 

  • [AIEEE 2006]

Let $\alpha_1, \alpha_2, \ldots, \alpha_7$ be the roots of the equation $x^7+$ $3 x^5-13 x^3-15 x=0$ and $\left|\alpha_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$. Then $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6$ is equal to $..................$.

  • [JEE MAIN 2023]

The integer $'k'$, for which the inequality $x^{2}-2(3 k-1) x+8 k^{2}-7>0$ is valid for every $x$ in $R ,$ is

  • [JEE MAIN 2021]