Number of integers satisfying inequality, $\sqrt {{{\log }_3}(x) - 1}  + \frac{{\frac{1}{2}{{\log }_3}\,{x^3}}}{{{{\log }_3}\,\frac{1}{3}}} + 2 > 0$ is

  • A

    $5$

  • B

    $6$

  • C

    $7$

  • D

    $8$

Similar Questions

If $\alpha ,\,\beta ,\,\gamma $ are the roots of the equation ${x^3} + 4x + 1 = 0,$ then ${(\alpha + \beta )^{ - 1}} + {(\beta + \gamma )^{ - 1}} + {(\gamma + \alpha )^{ - 1}} = $

If $x$ is real and satisfies $x + 2 > \sqrt {x + 4} ,$ then

Let $f(x)=x^4+a x^3+b x^2+c$ be a polynomial with real coefficients such that $f(1)=-9$. Suppose that $i \sqrt{3}$ is a root of the equation $4 x^3+3 a x^2+2 b x=0$, where $i=\sqrt{-1}$. If $\alpha_1, \alpha_2, \alpha_3$, and $\alpha_4$ are all the roots of the equation $f(x)=0$, then $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ is equal to. . . . . .

  • [IIT 2024]

If $2 + i$ is a root of the equation ${x^3} - 5{x^2} + 9x - 5 = 0$, then the other roots are

Number of natural solutions of the equation $xyz = 2^5 \times 3^2 \times  5^2$ is equal to