4-2.Quadratic Equations and Inequations
hard

$ \alpha $ એ  $x$ ની ન્યૂનતમ પૃણાંક કિમત છે કે જેથી $\frac{{x - 5}}{{{x^2} + 5x - 14}} > 0$ થાય તો .....

A

${\alpha ^2} + 3\alpha  - 4 = 0$

B

${\alpha ^2} - 5\alpha  + 4 = 0$

C

${\alpha ^2} - 7\alpha  + 6 = 0$

D

${\alpha ^2} + 5\alpha  - 6 = 0$

(JEE MAIN-2013)

Solution

$\frac{x-5}{x^{2}+5 x-14}>0$

$\Rightarrow {x^2} + 5x – 14 < x – 5$

$\Rightarrow x^{2}+4 x-9<0$

$\Rightarrow \alpha=-5,-4,-3,-2,-1,0,1$

$\alpha=-5$ does not satisfy any of the options

$\alpha=-4$ satisfy the option $(a) \alpha^{2}+3 \alpha-4=0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.