4-1.Complex numbers
hard

$n$ का वह न्यूनतम धनपूर्णांक मान जिसके लिए $\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right)^{ n }=1$ है 

A

$2$

B

$6$

C

$5$

D

$3$

(JEE MAIN-2018)

Solution

Let $l=\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right)$

$\therefore l=\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right) \times\left(\frac{1+i \sqrt{3}}{1+i \sqrt{3}}\right)$

$=\left(\frac{-2+i 2 \sqrt{3}}{4}\right)=\left(\frac{1-i \sqrt{3}}{-2}\right)$

Also, $l=\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right) \times\left(\frac{1-i \sqrt{3}}{1-i \sqrt{3}}\right)$

$=\left(\frac{4}{-2-i 2 \sqrt{3}}\right)=\left(\frac{-2}{1+i \sqrt{3}}\right)$

Now,

${\left( {\frac{{1 + i\sqrt 3 }}{{1 – i\sqrt 3 }}} \right)^3} = \left( {\frac{{1 + i\sqrt 3 }}{{1 – i\sqrt 3 }}} \right)\, \times $ $\,\left( {\frac{{1 + i\sqrt 3 }}{{1 – i\sqrt 3 }}} \right)\, \times \,\left( {\frac{{1 + i\sqrt 3 }}{{1 – i\sqrt 3 }}} \right)$

$ = \left( {\frac{{1 + i\sqrt 3 }}{{1 – i\sqrt 3 }}} \right) \times \left( {\frac{{ – 2}}{{1 + i\sqrt 3 }}} \right) \times \left( {\frac{{1 – i\sqrt 3 }}{{ – 2}}} \right) = 1$

$\therefore$ least positive integer $n$ is $3$ .

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.