- Home
- Standard 11
- Mathematics
6.Permutation and Combination
easy
The least value of natural number $n$ satisfying $C(n,\,5) + C(n,\,6)\,\, > C(n + 1,\,5)$ is
A
$11$
B
$10$
C
$12$
D
$13$
Solution
(a) $^n{C_5}\, + {\,^n}{C_6}\,\, > \,{\,^{n + 1}}{C_5}$ ==> $^{n + 1}{C_6}\,\, > \,{\,^{n + 1}}{C_5}$
==> $\frac{{(n + 1)!}}{{6!\,.\,(n – 5)!}}\,.\,\frac{{5!\,.\,(n – 4)!}}{{(n + 1)!}}\,\, > \,\,1$
==> $\frac{{(n – 4)}}{6}\,\, > \,\,1$
==> $n – 4\,\, > \,\,6\,\,\,\, \Rightarrow \,\,\,n\,\,\, > \,\,10$
Hence according to options n = 11.
Standard 11
Mathematics