6.Permutation and Combination
hard

The value of $\sum \limits_{ r =0}^{20}{ }^{50- r } C _{6}$ is equal to

A

${ }^{51} C _{7}+{ }^{30} C _{7}$

B

${ }^{51} C _{7}-{ }^{30} C _{7}$

C

${ }^{50} C _{7}-{ }^{30} C _{7}$

D

$^{50} C _{6}-{ }^{30} C _{6}$

(JEE MAIN-2020)

Solution

$\sum_{r=0}^{20}{ }^{50-r} C_{6}={ }^{50} C_{6}+{ }^{49} C_{6}+{ }^{48} C_{6}+\ldots . .+{ }^{30} C_{6}$

$={ }^{50} C_{6}+{ }^{49} C_{6}+\ldots . .+{ }^{31} C_{6}+\left({ }^{30} C_{6}+{ }^{30} C_{7}\right)-{ }^{30} C_{7}$

$={ }^{50} C_{6}+{ }^{49} C_{6}+\ldots . .+\left({ }^{31} C_{6}+{ }^{31} C_{7}\right)-{ }^{30} C_{7}$

$={ }^{50} C_{6}+{ }^{50} C_{7}-{ }^{30} C_{7}$

$={ }^{51} C_{7}-{ }^{30} C_{7}$

${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.