The value of $\sum \limits_{ r =0}^{20}{ }^{50- r } C _{6}$ is equal to
${ }^{51} C _{7}+{ }^{30} C _{7}$
${ }^{51} C _{7}-{ }^{30} C _{7}$
${ }^{50} C _{7}-{ }^{30} C _{7}$
$^{50} C _{6}-{ }^{30} C _{6}$
Determine $n$ if
$^{2 n} C_{3}:^{n} C_{3}=11: 1$
A test consists of $6$ multiple choice questions, each having $4$ alternative ans wers of which only one is correct. The number of ways, in which a candidate answers all six questions such that exactly four of the answers are correct, is
For non-negative integers $s$ and $r$, let
$\binom{s}{r}=\left\{\begin{array}{ll}\frac{s!}{r!(s-r)!} & \text { if } r \leq s \\ 0 & \text { if } r>s\end{array}\right.$
For positive integers $m$ and $n$, let
$(m, n) \sum_{ p =0}^{ m + n } \frac{ f ( m , n , p )}{\binom{ n + p }{ p }}$
where for any nonnegative integer $p$,
$f(m, n, p)=\sum_{i=0}^{ p }\binom{m}{i}\binom{n+i}{p}\binom{p+n}{p-i}$
Then which of the following statements is/are $TRUE$?
$(A)$ $(m, n)=g(n, m)$ for all positive integers $m, n$
$(B)$ $(m, n+1)=g(m+1, n)$ for all positive integers $m, n$
$(C)$ $(2 m, 2 n)=2 g(m, n)$ for all positive integers $m, n$
$(D)$ $(2 m, 2 n)=(g(m, n))^2$ for all positive integers $m, n$
$^n{P_r}{ \div ^n}{C_r}$ =
A person is permitted to select at least one and at most $n$ coins from a collection of $(2n + 1)$ distinct coins. If the total number of ways in which he can select coins is $255$, then $n$ equals