The value of $\sum \limits_{ r =0}^{20}{ }^{50- r } C _{6}$ is equal to

  • [JEE MAIN 2020]
  • A

    ${ }^{51} C _{7}+{ }^{30} C _{7}$

  • B

    ${ }^{51} C _{7}-{ }^{30} C _{7}$

  • C

    ${ }^{50} C _{7}-{ }^{30} C _{7}$

  • D

    $^{50} C _{6}-{ }^{30} C _{6}$

Similar Questions

Determine $n$ if

$^{2 n} C_{3}:^{n} C_{3}=11: 1$

A test consists of $6$ multiple choice questions, each having $4$ alternative ans wers of which only one is correct. The number of ways, in which a candidate answers all six questions such that exactly four of the answers are correct, is

  • [JEE MAIN 2020]

For non-negative integers $s$ and $r$, let

$\binom{s}{r}=\left\{\begin{array}{ll}\frac{s!}{r!(s-r)!} & \text { if } r \leq s \\ 0 & \text { if } r>s\end{array}\right.$

For positive integers $m$ and $n$, let

$(m, n) \sum_{ p =0}^{ m + n } \frac{ f ( m , n , p )}{\binom{ n + p }{ p }}$

where for any nonnegative integer $p$,

$f(m, n, p)=\sum_{i=0}^{ p }\binom{m}{i}\binom{n+i}{p}\binom{p+n}{p-i}$

Then which of the following statements is/are $TRUE$?

$(A)$ $(m, n)=g(n, m)$ for all positive integers $m, n$

$(B)$ $(m, n+1)=g(m+1, n)$ for all positive integers $m, n$

$(C)$ $(2 m, 2 n)=2 g(m, n)$ for all positive integers $m, n$

$(D)$ $(2 m, 2 n)=(g(m, n))^2$ for all positive integers $m, n$

  • [IIT 2020]

$^n{P_r}{ \div ^n}{C_r}$ =

A person is permitted to select at least one and at most $n$ coins from a collection of $(2n + 1)$ distinct coins. If the total number of ways in which he can select coins is $255$, then $n$ equals