Gujarati
Hindi
5.Work, Energy, Power and Collision
normal

The length of a spring is $\alpha $ when a force of $4\,N$ is applied on it and the length is $\beta $ when $5\,N$ force is applied. Then the length of spring when $9\,N$ force is applied is

A

$5\beta -4\alpha $

B

$\beta -\alpha $

C

$5\alpha -4\beta $

D

$9(\beta  - \alpha )$

Solution

Let the natural length of the spring $=\ell_{0}$

From figure

$4=\mathrm{k}\left(\alpha-\ell_{0}\right) \ldots(\mathrm{i})$

$5=\mathrm{k}\left(\beta-\ell_{0}\right) \dots(\mathrm{ii})$

$9=\mathrm{k}\left(\gamma-\ell_{0}\right) \ldots(\mathrm{iii})$

eq. $\frac{(\mathrm{iit})-(\mathrm{i})}{(\mathrm{ii})-(\mathrm{i})} \Rightarrow \frac{5}{4}=\frac{\mathrm{k}(\gamma-\alpha)}{\mathrm{k}(\gamma-\beta)}$

$\gamma=5 \beta-4 \alpha$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.