रेखा $x\cos \alpha + y\sin \alpha = p$ दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की एक स्पर्श रेखा होगी, यदि
${p^2} = {a^2}{\sin ^2}\alpha + {b^2}{\cos ^2}\alpha $
${p^2} = {a^2} + {b^2}$
${p^2} = {b^2}{\sin ^2}\alpha + {a^2}{\cos ^2}\alpha $
इनमें से कोई नहीं
मूल अक्षों के सापेक्ष दीर्घवृत्त जिसकी नाभिलम्ब $8$ है और जिसकी उत्केन्द्रता $\frac{1}{{\sqrt 2 }}$है, का समीकरण होगा
उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ $( \pm 5,\;0)$ तथा एक नियता $5x = 36$ है, होगा
शांकव $9{x^2} + 4{y^2} - 6x + 4y + 1 = 0$के अक्षों की लम्बाईयाँ हैं
वक्रों $y^2=2 x$ तथा $x^2+y^2=4 x$, के बिन्दु $(2,2)$ पर स्पर्श रेखाएँ तथा रेखा $\mathrm{x}+\mathrm{y}+2=0$ एक त्रिभुज बनाती है। यदि इस त्रिभुज के परिवृत्त की त्रिज्या है तो $\mathrm{r}^2$ बराबर है___________.
यदि वक्र $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$ तथा $\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$ एक दूसरे को $90^{\circ}$ के कोण पर काटते है, तो निम्न में से कौन सा संबंध सत्य है?