4-1.Complex numbers
medium

The locus of $z$ satisfying the inequality ${\log _{1/3}}|z + 1|\, > $ ${\log _{1/3}}|z - 1|$ is

A

$R\,(z) < 0$

B

$R\,(z) > 0$

C

$I\,(z) < 0$

D

None of these

Solution

(a)We know that ${\log _a}m > {\log _a}n$

==> $m > n$or $m < n$, according as $a > 1$or $0 < a < 1$.

Hence for $z = x + iy$
${\log _{(1/3)}}|z + 1|\, > \,{\log _{(1/3)}}|z – 1| \Rightarrow |z + 1|$$ < \,|z – 1|$
$\left\{ {\because 0 < \frac{1}{3} < 1} \right\}$
==>$|x + iy + 1| < |x + iy – 1|$
==> ${(x + 1)^2} + {y^2} < {(x – 1)^2} + {y^2}$
==> $4x < 0\, \Rightarrow x < 0\,\, \Rightarrow {\mathop{\rm Re}\nolimits} (z) < 0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.