The logical statement $[ \sim \,( \sim \,P\, \vee \,q)\, \vee \,\left( {p\, \wedge \,r} \right)\, \wedge \,( \sim \,q\, \wedge \,r)]$ is equivalent to
$\left( {p\, \wedge \,r} \right)\, \wedge \, \sim \,q$
$( \sim \,p\,\, \wedge \sim \,q)\, \wedge \,r$
$ \sim \,p\,\, \vee {\kern 1pt} \,r$
$\left( {p\, \wedge \sim q} \right) \wedge \,r\,$
Negation of the conditional : “If it rains, I shall go to school” is
The statement $( p \wedge(\sim q )) \Rightarrow( p \Rightarrow(\sim q ))$ is
The Boolean expression $(\mathrm{p} \wedge \mathrm{q}) \Rightarrow((\mathrm{r} \wedge \mathrm{q}) \wedge \mathrm{p})$ is equivalent to :
Negation of the Boolean expression $p \Leftrightarrow( q \Rightarrow p )$ is.
Negation of statement "If I will go to college, then I will be an engineer" is -