The logical statement $[ \sim \,( \sim \,P\, \vee \,q)\, \vee \,\left( {p\, \wedge \,r} \right)\, \wedge \,( \sim \,q\, \wedge \,r)]$ is equivalent to

  • [JEE MAIN 2019]
  • A

    $\left( {p\, \wedge \,r} \right)\, \wedge \, \sim \,q$

  • B

    $( \sim \,p\,\, \wedge  \sim \,q)\, \wedge \,r$

  • C

    $ \sim \,p\,\, \vee {\kern 1pt} \,r$

  • D

    $\left( {p\, \wedge  \sim q} \right) \wedge \,r\,$

Similar Questions

Negation of the conditional : “If it rains, I shall go to school” is

The statement $( p \wedge(\sim q )) \Rightarrow( p \Rightarrow(\sim q ))$ is

  • [JEE MAIN 2023]

The Boolean expression $(\mathrm{p} \wedge \mathrm{q}) \Rightarrow((\mathrm{r} \wedge \mathrm{q}) \wedge \mathrm{p})$ is equivalent to :

  • [JEE MAIN 2021]

Negation of the Boolean expression $p \Leftrightarrow( q \Rightarrow p )$ is.

  • [JEE MAIN 2022]

Negation of statement "If I will go to college, then I will be an engineer" is -