$\sim (p \Rightarrow q) \Leftrightarrow \sim p\; \vee \sim q$ is
A tautology
A contradiction
Neither a tautology nor a contradiction
Cannot come to any conclusion
The negation of the statement $(( A \wedge( B \vee C )) \Rightarrow( A \vee B )) \Rightarrow A$ is
The number of values of $r \in\{p, q, \sim p , \sim q \}$ for which $((p \wedge q) \Rightarrow(r \vee q)) \wedge((p \wedge r) \Rightarrow q)$ is a tautology, is:
The number of ordered triplets of the truth values of $p, q$ and $r$ such that the truth value of the statement $(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$ is True, is equal to
Negation of $(p \Rightarrow q) \Rightarrow(q \Rightarrow p)$ is
The negation of the expression $q \vee((\sim q) \wedge p)$ is equivalent to