The logically equivalent preposition of $p \Leftrightarrow q$ is
$\left( {p \Rightarrow q} \right) \wedge \left( {q \Rightarrow p} \right)$
$p \wedge q$
$\left( {p \wedge q} \right) \vee \left( {q \Rightarrow p} \right)$
$\left( {p \wedge q} \right) \Rightarrow \left( {q \vee p} \right)$
Negation of the statement $P$ : For every real number, either $x > 5$ or $x < 5$ is
Which of the following is a tautology?
The statement $( p \wedge q ) \Rightarrow( p \wedge r )$ is equivalent to.
The statement $(p \Rightarrow q) \vee(p \Rightarrow r)$ is NOT equivalent to.
Which of the following is equivalent to the Boolean expression $\mathrm{p} \wedge \sim \mathrm{q}$ ?