In an electromagnetic wave, the amplitude of electric field is $1 V/m.$ the frequency of wave is $5 \times {10^{14}}\,Hz$. The wave is propagating along $z-$ axis. The average energy density of electric field, in $Joule/m^3$, will be
$1.1 \times {10^{ - 11}}$
$2.2 \times {10^{ - 12}}$
$3.3 \times {10^{ - 13}}$
$4.4 \times {10^{ - 14}}$
The electric field part of an electromagnetic wave in vacuum is
$E = 3.1\,NC^{-1}\,cos\,[\,(1.8\,rad\,m^{-1})\,y + (5.4\times 18^8\,rad\,s^{-1})\,t\,]\,\hat i$
The wavelength of this part of electromagnetic wave is......$m$
Which scientist first time produced electromagnetic waves in laboratory?
The speed of electromagnetic wave in vacuum depends upon the source of radiation
Magnetic field in a plane electromagnetic wave is given by
$\vec B = {B_0}\,\sin \,\left( {kx + \omega t} \right)\hat jT$
Expression for corresponding electric field will be Where $c$ is speed of light
A plane electromagnetic wave of frequency $25 \;MHz$ travels in free space along the $x$ -direction. At a particular point in space and time, $E = 6.3\,\hat j\;\,V/m$. What is $B$ at this point?