- Home
- Standard 12
- Physics
The $rms$ value of the electric field of the light coming from the Sun is $720\;N/C$. The average total energy density of the electromagnetic wave is
$4.58 \times 10^{-6} $ $J/m^3$
$6.37 \times 10^{-9} $ $J/m^3$
$81.35 \times 10^{-12}$ $J/m^3$
$3.3\times 10^{-3} $ $J/m^3$
Solution
$u =\frac{1}{2} \varepsilon_{0} E _{ rms }^{2}+\frac{1}{2 \mu_{0}} B _{ rms }^{2}$
$= \frac{1}{2} \varepsilon_{0} E _{ rms }^{2}+\frac{1}{2 \mu_{0}} \frac{ E _{ rms }^{2}}{ c ^{2}} \quad\left(\because B _{ rms }=\frac{ E _{ rms }}{ c }\right)$
$= \frac{1}{2} \varepsilon_{0} E _{ rms }^{2}+\frac{\varepsilon_{0} \mu_{0} E _{ rms }^{2}}{2 \mu_{0}} \left(\because c ^{2}=\frac{1}{\varepsilon_{0} \mu_{0}}\right)$
$= \frac{1}{2} \varepsilon_{0} E _{ rms }^{2}+\frac{1}{2} \varepsilon_{0} E _{ rms }^{2}$$=\varepsilon_{0} E _{ rms }^{2}$
$= 8.85 \times 10^{-12} \times(720)^{2}$
$= 4.58 \times 10^{-6} J / m ^{3}$