The magnetic field of a plane electromagnetic wave is given by $\overrightarrow{ B }=3 \times 10^{-8} \cos \left(1.6 \times 10^3 x +48 \times 10^{10} t \right) \hat{ j }$, then the associated electric field will be :
$3 \times 10^{-8} \cos \left(1.6 \times 10^3 x +48 \times 10^{10} t \right) \hat{ i }\,V / m$
$3 \times 10^{-8} \sin \left(1.6 \times 10^3 x +48 \times 10^{10} t \right) \hat{ i }\,V / m$
$9 \sin \left(1.6 \times 10^3 x -48 \times 10^{10} t \right) \hat{ k}\,V / m$
$9 \cos \left(1.6 \times 10^3 x +48 \times 10^{10} t \right) \hat{ k }\, V / m$
The magnetic field in a travelling electromagnetic wave has a peak value of $20\ n T$. The peak value of electric field strength is......$Vm^{-1}$
A plane electromagnetic wave is incident on a material surface. If the wave delivers momentum $p$ and energy $E$, then
The speed of electromagnetic wave in vacuum depends upon the source of radiation
A beam of light travelling along $X$-axis is described by the electric field $E _{ y }=900 \sin \omega( t - x / c )$. The ratio of electric force to magnetic force on a charge $q$ moving along $Y$-axis with a speed of $3 \times 10^{7}\,ms ^{-1}$ will be.
[Given speed of light $=3 \times 10^{8}\,ms ^{-1}$ ]
A wave is propagating in a medium of electric dielectric constant $2$ and relative magnetic permeability $50$. The wave impedance of such a medium is.....$ \Omega$