The magnetic field of an electromagnetic wave is given by

$\vec B = 1.6 \times {10^{ - 6}}\,\cos \,\left( {2 \times {{10}^7}z + 6 \times {{10}^{15}}t} \right)\left( {2\hat i + \hat j} \right)\frac{{Wb}}{{{m^2}}}$ The associated electric field will be

  • [JEE MAIN 2019]
  • A

    $\vec E = 4.8 \times {10^{ 2}}\,\cos \,\left( {2 \times {{10}^7}z + 6 \times {{10}^{15}}t} \right)\left( { - \hat i + 2\hat j} \right)\frac{V}{m}$

  • B

    $\vec E = 4.8 \times {10^{ 2}}\,\cos \,\left( {2 \times {{10}^7}z + 6 \times {{10}^{15}}t} \right)\left( { - 2\hat j + 2\hat i} \right)\frac{V}{m}$

  • C

    $\vec E = 4.8 \times {10^{ 2}}\,\cos \,\left( {2 \times {{10}^7}z + 6 \times {{10}^{15}}t} \right)\left( {\hat i + 2\hat j} \right)\frac{V}{m}$

  • D

    $\vec E = 4.8 \times {10^{ 2}}\,\cos \,\left( {2 \times {{10}^7}z + 6 \times {{10}^{15}}t} \right)\left( {2\hat i + \hat j} \right)\frac{V}{m}$

Similar Questions

Write characteristics of electromagnetic waves. 

A radio transmitter transmits at $830\, kHz$. At a certain distance from the transmitter magnetic field has amplitude $4.82\times10^{-11}\,T$. The electric field and the wavelength are respectively

  • [AIEEE 2012]

In a plane electromagnetic wave travelling in free space, the electric field component oscillates sinusoidally at a frequency of $2.0 \times 10^{10}\,Hz$ and amplitude $48\,Vm ^{-1}$. Then the amplitude of oscillating magnetic field is : (Speed of light in free space $=3 \times 10^8\,m s ^{-1}$)

  • [NEET 2023]

The following travelling electromagnetic wave $E_x=0$ $E_y=E_0 \sin (k x+\omega t), E_z=-2 E_0 \sin (k x-\omega t)$ is

  • [KVPY 2010]

If electromagnetic wave is propagating in $x-$ direction and electric and magnetic field are in $y$ and $z-$ direction respectively then write equation of $Ey$ and $Bz$.