Gujarati
Hindi
7.Gravitation
normal

The magnitudes of gravitational field at distance $r_1$ and $r_2$ from the centre of a uniform sphere of radius $R$ and mass $M$ are $F_1$ and $F_2$ respectively. Then

A

$\frac{{{F_1}}}{{{F_2}}} = \frac{{{r_1}}}{{{r_2}}}$ if $r_1 < R$ and $r_2 < R$

B

$\frac{{{F_1}}}{{{F_2}}} = \frac{{{r_1}}}{{{r_2}}}$ if $r_1 > R$ and $r_2 > R$

C

$\frac{{{F_1}}}{{{F_2}}} = \frac{{{r_1^2}}}{{{r_2^2}}}$ if $r_1 < R$ and $r_2 < R$

D

$\frac{{{F_1}}}{{{F_2}}} = \frac{{{r_1^2}}}{{{r_2^2}}}$ if $r_1 > R$ and $r_2 > R$

Solution

Within the uniform sphere (i.e.. if $\mathrm{r}_{1}<\mathrm{R}$ and $\mathrm{r}_{2}$ $<\mathrm{R}$ ), the gravitational force is given by.

${\mathrm{F}=-\frac{\mathrm{GMm}}{\mathrm{R}^{3}} \mathrm{r} \quad \text { or } \quad \mathrm{F} \propto \mathrm{r}} $

So,  ${\frac{\mathrm{F}_{1}}{\mathrm{F}_{2}}=\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}}$

Hence, the only correct choice is $( 1).$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.