The mass of the bob of a simple pendulum of length $L$ is $m$. If the bob is left from its horizontal position then the speed of the bob and the tension in the thread in the lowest position of the bob will be respectively

824-560

  • A

    $\sqrt {2gL}$ and $3\,mg$

  • B

    $3\,mg$ and $\sqrt {2gL}$

  • C

    $2\,mg$ and $\sqrt {2gL}$

  • D

    $3\,gL$ and $3\,mg$

Similar Questions

A boy holds a uniform chain of length $2\,m$ which is kept on a smooth table such that a length of $60\,cm$ hangs freely from the edge of the table. The total mass of the chain is $4\,kg$. What is the work done in pulling the entire chain on the table .............. $\mathrm{J}$

A disc of mass $M$ and radius $R$ rolls on a horizontal surface and then rolls up an inclined plane as shown in the figure. If the velocity of the disc is $v$, the height to which the disc will rise will be

Pulley and spring are massless and the friction is absent everwhere. $5\,kg$ block is released from rest. The speed of $5\,kg$ block when $2\,kg$ block leaves the contact with ground is (take force constant of the spring $K = 40\,N/m$ and $g = 10\,m/s^2$ )

A particle is made to move from the origin in three spells of equal distances, first along the $x-$ axis, second parallel to $y-$ axis and third parallel to $z-$ axis. One of the forces acting on it is has constant magnitude of $50\,N$ and always acts along the direction of motion. Work done by this force in the three spells of motion are equal and total work done in all the three spells is $300\,J$. The final coordinates of the particle will be

$ABCDE$ is a channel in the vertical plane, part $BCDE$ being circular with radius $r$ . A block is released from $A$ and slides without friction and without rolling. The block will complete the loop if $h$ is