The mass of the bob of a simple pendulum of length $L$ is $m$. If the bob is left from its horizontal position then the speed of the bob and the tension in the thread in the lowest position of the bob will be respectively
$\sqrt {2gL}$ and $3\,mg$
$3\,mg$ and $\sqrt {2gL}$
$2\,mg$ and $\sqrt {2gL}$
$3\,gL$ and $3\,mg$
Underline the correct alternative :
$(a)$ When a conservative force does positive work on a body, the potential energy of the body increases/decreases/remains unaltered.
$(b)$ Work done by a body against friction always results in a loss of its kinetic/potential energy.
$(c)$ The rate of change of total momentum of a many-particle system is proportional to the external force/sum of the internal forces on the system.
$(d)$ In an inelastic collision of two bodies, the quantities which do not change after the collision are the total kinetic energy/total linear momentum/total energy of the system of two bodies.
Adjacent figure shows the force-displacement graph of a moving body, what is the work done by this force in displacing body from $x = 0$ to $x = 35\,m$ ? ........... $\mathrm{J}$
A force of $\left( {2\hat i + 3\hat j + 4\hat k} \right)\,N$ acts on a body for $4\, sec$ and produces a displacement of $\left( {3\hat i + 4\hat j + 5\hat k} \right)\,m.$ The power used is ............. $\mathrm{W}$
A force acts on a $3.0\ g$ particle in such a way that the position of the particle as a function of time is given by:
$x = 3t - 4t^2 + t^3$
Where $x$ is in metres and $t$ is in seconds. The work done during the first $4\ s$ is ................. $\mathrm{mJ}$
Two identical $5\,\,kg.$ blocks are moving with same speed of $2\,\,m/s$ towards each other along a frictionless horizontal surface. The two blocks collide, stick together and come to rest. Consider to two blocks as a system, the work done on the system by the external forces will be .............. $\mathrm{Joule}$